Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

A dimeric constrained-geometry titanium complex linked by double $\mathrm{Ti}-\mathrm{CH}_{2}-\mathrm{Al}-\mathrm{CH}_{2}$ heterocycles

Khalil A. Abboud, ${ }^{\text {a }}{ }^{\text {Peter N. Nickias }}{ }^{\text {b }}$ and Eugene Y.-X. Chen ${ }^{\text {b }} \boldsymbol{}$
${ }^{\text {a }}$ Department of Chemistry, University of Florida, PO Box 117200, Gainesville, Florida 32611-7200, USA, and ${ }^{\mathbf{b}}$ The Dow Chemical Company, Corporate R\&D, Midland, Michigan 48674, USA
Correspondence e-mail: abboud@ufl.edu

Received 1 June 2001

Accepted 9 October 2001
Online 22 December 2001
In the structure of $\operatorname{bis}\left(\left\{N\right.\right.$-[dimethyl $\left(1 \eta^{5}-2,3,4,6\right.$-tetramethyl-indenyl)silyl]cyclohexylamido- $1 \kappa N\}$ (methyl- $3 \kappa C$)-di- μ_{3}-methyl-ene-1:2:3 $\kappa^{3} C ; 1: 3: 3^{\prime} \kappa^{3} C$-tris(pentafluorophenyl- $2 \kappa C$)titanium) benzene disolvate, $\left[\mathrm{Me}_{2} \mathrm{Si}\left(\eta^{5}-2,3,4,6-\mathrm{Me}_{4} \mathrm{C}_{9} \mathrm{H}_{2}\right)\left(\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{~N}\right)\right] \mathrm{Ti}-$ $\left[\left(\mu_{3}-\mathrm{CH}_{2}\right) \mathrm{Al}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]\left[\mathrm{AlMe}\left(\mu_{3}-\mathrm{CH}_{2}\right)\right]_{2}$ or $\left[\mathrm{Ti}_{2}\left(\mathrm{C}_{21} \mathrm{H}_{7} \mathrm{AlF}_{15}\right)_{2^{-}}\right.$ $\left.\left(\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{NSi}\right)_{2}\right] \cdot 2 \mathrm{C}_{6} \mathrm{D}_{6}$, the dimer is located on an inversion center, and the two Ti centers are linked by double $\mathrm{Ti}\left(\mu_{3^{-}}\right.$ $\left.\mathrm{CH}_{2}\right) \mathrm{Al}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \mathrm{AlMe}\left(\mu_{3}-\mathrm{CH}_{2}\right)$ heterocycles. The electrondeficient Ti centers are further stabilized by two α-agostic interactions between Ti and one H atom of each bridging methylene group.

Comment

Catalyst decomposition of activated metallocene and con-strained-geometry complexes is a key contribution to catalyst activity decay in catalytic homogeneous olefin polymerization (Chen \& Marks, 2000). We were interested in the thermal stability of an activated catalyst, $\mathrm{Me}_{2} \mathrm{Si}\left(\eta^{5}-2,3,4,6-\mathrm{Me}_{4} \mathrm{C}_{9} \mathrm{H}_{2}\right)$ $\left(\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{~N}\right) \mathrm{Ti}\left(\mathrm{CH}_{3}\right)\left[\mu-\mathrm{CH}_{3} \mathrm{Al}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]$, (I), an example of the constrained geometry catalyst family (McKnight \& Waymouth, 1998). Upon heating a $\mathrm{C}_{6} \mathrm{D}_{6}$ solution of (I) in a sealed NMR tube under an argon atmosphere at 333 K for 12 h , we found that dimer (II) was formed, the structure of which is reported here.

The molecular structure of compound (II) is depicted in Fig. 1 and selected geometric parameters are given in Table 1. Complex (II) crystallizes as a dimer having an inversion center. Each Ti metal center is coordinated in a distorted tetrahedral geometry $\left[\mathrm{N} 1-\mathrm{Ti}-\mathrm{C} 22=110.4(2)^{\circ}, \mathrm{N} 1-\mathrm{Ti}-\right.$ $\mathrm{C} 23=105.6(2)^{\circ}$ and $\left.\mathrm{C} 22-\mathrm{Ti}-\mathrm{C} 23=89.8(2)^{\circ}\right]$ by the η^{5} substituted indenyl ligand, the dimethylsilyl-bridged N-cyclohexyl amide, and two anionic methylene ligands. The openness of the coordination sphere about Ti is manifested by an obtuse

[^0]$\mathrm{Cp}($ centroid $)-\mathrm{Ti}-\mathrm{N}$ angle of 108.1 (2) ${ }^{\circ}$. In addition to the above ligands coordinated to Ti , one H atom of each bridging methylene group ($\mathrm{H} 22 B$ and $\mathrm{H} 23 A$) exhibits a relatively close contact to Ti , with $\mathrm{Ti}-\mathrm{H} 22 B$ and $\mathrm{Ti}-\mathrm{H} 23 A$ distances of 2.19 (3) and 2.26 (3) \AA and acute $\mathrm{Ti}-\mathrm{C} 22-\mathrm{H} 22 B$ and $\mathrm{Ti}-$ $\mathrm{C} 23-\mathrm{H} 23 A$ angles of 77 (2) and $80(2)^{\circ}$, respectively, indicative of two α-agostic interactions to each Ti atom.

(I)

(II)

Two bridging methylene ligands are bound unsymmetrically to Ti, with distances of 2.195 (3) and 2.230 (3) \AA for $\mathrm{Ti}-\mathrm{C} 22$ and $\mathrm{Ti}-\mathrm{C} 23$, respectively, which are approximately $0.2 \AA$ (average) longer than the $\mathrm{Ti}\left(\mu-\mathrm{CH}_{2}\right)$ distances in $\left[\left(\mathrm{Cy}_{2} \mathrm{~N}\right)_{2} \mathrm{Ti}\left(\mu-\mathrm{CH}_{2}\right)\right]_{2}$ (Scoles et al., 1994). These distances are slightly shorter than the $\mathrm{Ti}-\mathrm{CH}_{3}$ bond in $\left[\mathrm{CpTi}\left(\mu_{2}-\mathrm{Me}\right)\left(\mu_{2^{-}}\right.\right.$ $\left.\left.\mathrm{NPiPr}_{3}\right)\left(\mu_{4}-\mathrm{C}\right)\left(\mu_{2}-\mathrm{AlMe}_{2}\right)_{2}\left(\mathrm{AlMe}_{2}\right)\right]$, but substantially longer than the $\mathrm{Ti}-\mathrm{C}$ (carbide) bond in the same molecule (Kickham et al., 2000). Linking the two Ti centers are three fused fourmembered metallacycles, with torsion angles of 126.5 (2) and

Figure 1
The molecular structure of (I) showing 40% probability displacement ellipsoids and the atom-numbering scheme. Atoms All and $\operatorname{All} A$ (where $A=1-x, 1-y,-z)$ have three open bonds around them, representing $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups, which are not shown for clarity. The benzene solvent molecules have also been removed for clarity.
144.3 (2) ${ }^{\circ}$ for $\mathrm{C} 23-\mathrm{Al} 2-\mathrm{C} 22-\mathrm{Al} 2 \mathrm{~A}$ and $\mathrm{Ti}-\mathrm{C} 22-\mathrm{Al} 2-$ $\mathrm{C} 22 A$, respectively ($\mathrm{Al} 2 A$ and $\mathrm{C} 22 A$ are derived from Al 2 and C 22 by $1-x, 1-y,-z$). The middle four-membered ring is coplanar $\left(\mathrm{C} 22-\mathrm{Al} 2-\mathrm{C} 22 A-\mathrm{Al} 2 A=0^{\circ}\right)$, while the other two adopt a 'puckered' conformation $[\mathrm{Ti}-\mathrm{C} 22-\mathrm{Al} 2-\mathrm{C} 23=$ $\left.-17.8(2)^{\circ}\right]$. Due to the presence of strain arising from the metallacycles, the geometry at the Al center on the ring (Al2) is that of a highly distorted tetrahedron. The largest deviations from tetrahedral geometry are found in the obtuse C22-A12-C23 angle of 99.2 (2) ${ }^{\circ}$ and the significantly larger C23-Al2-C22A angle of 123.5 (2) ${ }^{\circ}$.

There is an $\mathrm{Al}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ group attached to C 23 (and $\mathrm{C} 23 A$) and the $\mathrm{Ti}-\mathrm{C} 23-\mathrm{Al1}$ vector is close to linearity $\left[170.7(2)^{\circ}\right]$, suggesting some degree of dipole-dipole component to the ion-ion interaction in this complex. Compared to the $\mathrm{Ti}-\mathrm{C} 22$ bond distance, the $\mathrm{Ti}-\mathrm{C} 23$ bond is only slightly elongated as a result of the attached strongly Lewis acidic $\mathrm{Al}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ group, presumably due to the metallacycle formation. The C23$\mathrm{Al}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ distance of 2.048 (3) \AA is comparable to those in the $\mu-\mathrm{CH}_{3}-\mathrm{Al}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}^{-}$anion [2.084(2) and $2.059(2) \AA$] in a 'doubly activated' ansa-zirconocene complex (Chen, 2000) and to that in the $\mu-\mathrm{CH}_{3}-\mathrm{Al}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}^{-}$anion [2.033(3) \AA] in a 'constrained-geometry' Ti complex (Chen et al., 2001).

Experimental

All syntheses and manipulations of air-sensitive materials were carried out under an inert atmosphere (argon) glove-box. NMR scale reactions were conducted in Teflon-valve-sealed sample J-Young tubes. Solvents were first saturated with nitrogen and then dried by passage through activated alumina and $Q-5^{\mathrm{TM}}$ catalyst prior to use. Deuterated NMR solvents were dried over sodium/potassium alloy and distilled and/or filtered prior to use. $\mathrm{Me}_{2} \mathrm{Si}\left(\eta^{5}-2,3,4,6-\mathrm{Me}_{4}{ }^{-}\right.$ $\left.\mathrm{C}_{9} \mathrm{H}_{2}\right)\left(\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{~N}\right) \mathrm{Ti}\left(\mathrm{CH}_{3}\right)\left[\mu-\mathrm{CH}_{3} \mathrm{Al}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]$, (I), was prepared from the reaction on $\mathrm{Me}_{2} \mathrm{Si}\left(\eta^{5}-2,3,4,6-\mathrm{Me}_{4}-\mathrm{C}_{9} \mathrm{H}_{2}\right)\left(\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{~N}\right) \mathrm{Ti}\left(\mathrm{CH}_{3}\right)_{2}$ with $\mathrm{Al}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ in toluene or benzene at room temperature using a procedure similar to that described previously by Chen et al. (2001). Compound (I) was dissolved in benzene- d_{6} in a J-Young NMR tube and the solution was heated in an oil bath at 333 K for 12 h . The resulting dark-red solution was stored at room temperature in a glove-box for 5 d , after which time, black crystals of (II) had formed.

Crystal data

$\left[\mathrm{Ti}_{2}\left(\mathrm{C}_{21} \mathrm{H}_{7} \mathrm{AlF}_{15}\right)_{2}\left(\mathrm{C}_{21} \mathrm{H}_{31}{ }^{-}\right.\right.$
$\left.\mathrm{NSi})_{2}\right] \cdot 2 \mathrm{C}_{6} \mathrm{D}_{6}$
$M_{r}=2099.58$
Triclinic, $P \overline{1}$
$a=12.8651(7) \AA$
$b=13.7422(7) \AA$
$c=15.2642(9) \AA$
$\alpha=70.595(2)^{\circ}$
$\beta=70.795(2)^{\circ}$
$\gamma=71.944(2)^{\circ}$
$V=2341.9(2) \AA^{3}$

Data collection
Bruker SMART CCD area-detector
\quad diffractometer
ω scans
Absorption correction: integration
based on measured indexed
crystal faces $(S H E L X T L ;$ Bruker,
$1998)$
$T_{\text {min }}=0.925, T_{\text {max }}=0.985$

$$
\begin{aligned}
& Z=1 \\
& D_{x}=1.489 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 4099 \\
& \quad \text { reflections } \\
& \theta=2.0-27.5^{\circ} \\
& \mu=0.34 \mathrm{~mm}^{-1} \\
& T=173(2) \mathrm{K} \\
& \text { Needle, black } \\
& 0.27 \times 0.11 \times 0.06 \mathrm{~mm}
\end{aligned}
$$

15647 measured reflections 10542 independent reflections 5884 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.037$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-15 \rightarrow 16$
$k=-10 \rightarrow 17$
$l=-17 \rightarrow 19$

Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$.

$\mathrm{Ti}-\mathrm{N} 1$	$1.898(2)$	$\mathrm{Ti}-\mathrm{H} 22 B$	$2.19(3)$
$\mathrm{Ti}-\mathrm{C} 22$	$2.195(3)$	$\mathrm{Ti}-\mathrm{H} 23 A$	$2.26(3)$
$\mathrm{Ti}-\mathrm{C} 23$	$2.230(3)$	$\mathrm{Al} 1-\mathrm{C} 23$	$2.048(3)$
$\mathrm{Ti}-\mathrm{C} 1$	$2.256(3)$	$\mathrm{Al2}-\mathrm{C} 42$	$1.950(3)$
$\mathrm{Ti}-\mathrm{C} 2$	$2.333(3)$	$\mathrm{Al2}-\mathrm{C} 23$	$2.015(3)$
$\mathrm{Ti}-\mathrm{C} 8$	$2.395(3)$	$\mathrm{Al2}-\mathrm{C} 22$	$2.085(3)$
$\mathrm{Ti}-\mathrm{C} 3$	$2.474(3)$	$\mathrm{Al2}-\mathrm{C} 22^{\mathrm{i}}$	$2.086(3)$
$\mathrm{Ti}-\mathrm{C} 9$	$2.556(3)$	$\mathrm{Al2}-\mathrm{Al} 2^{\mathrm{i}}$	$2.695(2)$
$\mathrm{N} 1-\mathrm{Ti}-\mathrm{C} 22$	$110.38(12)$	$\mathrm{Al2}-\mathrm{C} 22-\mathrm{Ti}$	$140.60(19)$
$\mathrm{N} 1-\mathrm{Ti}-\mathrm{C} 23$	$105.62(12)$	$\mathrm{Ti}-\mathrm{C} 22-\mathrm{H} 22 B$	$77.5(19)$
$\mathrm{C} 22-\mathrm{Ti}-\mathrm{C} 23$	$89.82(12)$	$\mathrm{Al2}-\mathrm{C} 23-\mathrm{Ti}$	$83.33(12)$
$\mathrm{C} 22-\mathrm{Al} 2-\mathrm{C} 22^{\mathrm{i}}$	$99.48(12)$	$\mathrm{Ti}-\mathrm{C} 23-\mathrm{H} 23 A$	$80(2)$
$\mathrm{Al2}-\mathrm{C} 22-\mathrm{Ti}$	$82.62(12)$		

Symmetry code: (i) $1-x, 1-y,-z$.

Refinement

Refinement on F^{2}
H atoms treated by a mixture of independent and constrained refinement
$w R\left(F^{2}\right)=0.123$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0481 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.35 \mathrm{e}^{\circ} \AA^{-3}$
$\Delta \rho_{\min }=-0.37 \mathrm{e}^{-3}$
$\mathrm{C}-\mathrm{H}$ distances of 0.98 and $0.99 \AA$ were used for methyl and secondary C atoms, respectively. A distance of $0.95 \AA$ was used for aromatic C atoms. The H -atom displacement parameters were set at $1.2 U_{\text {eq }}$ of the parent C atom or $1.5 U_{\text {eq }}$ for the methyl atoms. The H atoms on C22 and C23 were obtained from a difference Fourier map and refined without constraint. In addition to the complex, a molecule of benzene was found in a general position. Full data-collection details are in the archived CIF and also reported elsewhere (Abboud et al., 1997).

Data collection: SMART (Bruker, 1998); cell refinement: SMART and SAINT (Bruker, 1998); data reduction: SHELXTL (Bruker, 1998); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: $S H E L X T L$; molecular graphics: Bruker SHELXTL.

KAA wishes to acknowledge the National Science Foundation and the University of Florida for funding of the purchase of the X-ray equipment.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FR1315). Services for accessing these data are described at the back of the journal.

References

Abboud, K. A., Ortiz, C. G., Palenik, R. C. \& Palenik, G. J. (1997). Acta Cryst. C53, 1322-1323.
Bruker (1998). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Chen, E. Y.-X. (2000). PCT Int. Appl. WO 00/09524.
Chen, E. Y.-X., Kruper, W. J., Roof, G. \& Wilson, D. R. (2001). J. Am. Chem. Soc. 123, 745-746.
Chen, E. Y.-X. \& Marks, T. J. (2000). Chem. Rev. 100, 1391-1434.
Kickham, J. E., Guerin, F., Stewart, J. C. \& Stephan, D. W. (2000). Angew. Chem. Int. Ed. 39, 3263-3266.
McKnight, A. L. \& Waymouth, R. M. (1998). Chem. Rev. 98, 2587-2598.
Scoles, L., Minhas, R., Duchateau, R., Jubb, J. \& Gambarotta, S. (1994). Organometallics, 13, 4978-4983.

[^0]: \dagger Current address: Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.

