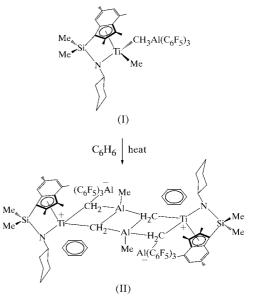
ISSN 0108-2701

A dimeric constrained-geometry titanium complex linked by double Ti-CH₂-Al-CH₂ heterocycles

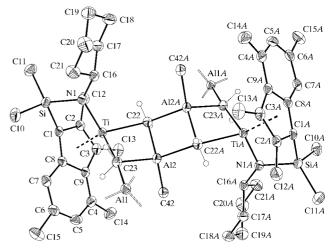
Khalil A. Abboud,^a* Peter N. Nickias^b and Eugene Y.-X. Chen^b⁺

^aDepartment of Chemistry, University of Florida, PO Box 117200, Gainesville, Florida 32611-7200, USA, and ^bThe Dow Chemical Company, Corporate R&D, Midland, Michigan 48674, USA Correspondence e-mail: abboud@ufl.edu

Received 1 June 2001 Accepted 9 October 2001 Online 22 December 2001


In the structure of bis({*N*-[dimethyl($1\eta^{5}$ -2,3,4,6-tetramethylindenyl)sily]]cyclohexylamido- $1\kappa N$ }(methyl- $3\kappa C$)-di- μ_3 -methylene-1:2: $3\kappa^3 C$;1: $3:3'\kappa^3 C$ -tris(pentafluorophenyl- $2\kappa C$)titanium) benzene disolvate, [Me₂Si(η^{5} -2,3,4,6-Me₄C₉H₂)(C₆H₁₁N)]Ti-[(μ_3 -CH₂)Al(C₆F₅)₃][AlMe(μ_3 -CH₂)]₂ or [Ti₂(C₂₁H₇AlF₁₅)₂-(C₂₁H₃₁NSi)₂]·2C₆D₆, the dimer is located on an inversion center, and the two Ti centers are linked by double Ti(μ_3 -CH₂)Al(C₆F₅)₃AlMe(μ_3 -CH₂) heterocycles. The electrondeficient Ti centers are further stabilized by two α -agostic interactions between Ti and one H atom of each bridging methylene group.

Comment


Catalyst decomposition of activated metallocene and constrained-geometry complexes is a key contribution to catalyst activity decay in catalytic homogeneous olefin polymerization (Chen & Marks, 2000). We were interested in the thermal stability of an activated catalyst, Me₂Si(η^{5} -2,3,4,6-Me₄C₉H₂)-(C₆H₁₁N)Ti(CH₃)[μ -CH₃Al(C₆F₅)₃], (I), an example of the constrained geometry catalyst family (McKnight & Waymouth, 1998). Upon heating a C₆D₆ solution of (I) in a sealed NMR tube under an argon atmosphere at 333 K for 12 h, we found that dimer (II) was formed, the structure of which is reported here.

The molecular structure of compound (II) is depicted in Fig. 1 and selected geometric parameters are given in Table 1. Complex (II) crystallizes as a dimer having an inversion center. Each Ti metal center is coordinated in a distorted tetrahedral geometry $[N1-Ti-C22 = 110.4 (2)^{\circ}, N1-Ti-C23 = 105.6 (2)^{\circ}$ and $C22-Ti-C23 = 89.8 (2)^{\circ}]$ by the η^{5} -substituted indenyl ligand, the dimethylsilyl-bridged *N*-cyclohexyl amide, and two anionic methylene ligands. The openness of the coordination sphere about Ti is manifested by an obtuse

Cp(centroid)—Ti—N angle of 108.1 (2)°. In addition to the above ligands coordinated to Ti, one H atom of each bridging methylene group (H22*B* and H23*A*) exhibits a relatively close contact to Ti, with Ti—H22*B* and Ti—H23*A* distances of 2.19 (3) and 2.26 (3) Å and acute Ti—C22—H22*B* and Ti—C23—H23*A* angles of 77 (2) and 80 (2)°, respectively, indicative of two α -agostic interactions to each Ti atom.

Two bridging methylene ligands are bound unsymmetrically to Ti, with distances of 2.195 (3) and 2.230 (3) Å for Ti-C22 and Ti-C23, respectively, which are approximately 0.2 Å (average) longer than the Ti(μ -CH₂) distances in [(Cy₂N)₂Ti(μ -CH₂)]₂ (Scoles *et al.*, 1994). These distances are slightly shorter than the Ti-CH₃ bond in [CpTi(μ_2 -Me)(μ_2 -NPiPr₃)(μ_4 -C)(μ_2 -AlMe₂)₂(AlMe₂)], but substantially longer than the Ti-C(carbide) bond in the same molecule (Kickham *et al.*, 2000). Linking the two Ti centers are three fused fourmembered metallacycles, with torsion angles of 126.5 (2) and

Figure 1

The molecular structure of (I) showing 40% probability displacement ellipsoids and the atom-numbering scheme. Atoms Al1 and Al1A (where A = 1 - x, 1 - y, -z) have three open bonds around them, representing C₆F₅ groups, which are not shown for clarity. The benzene solvent molecules have also been removed for clarity.

[†] Current address: Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.

144.3 (2)° for C23-Al2-C22-Al2A and Ti-C22-Al2-C22A, respectively (Al2A and C2A are derived from Al2 and C22 by 1 - x, 1 - y, -z). The middle four-membered ring is coplanar (C22-Al2-C22A-Al2A = 0°), while the other two adopt a 'puckered' conformation [Ti-C22-Al2-C23 = -17.8 (2)°]. Due to the presence of strain arising from the metallacycles, the geometry at the Al center on the ring (Al2) is that of a highly distorted tetrahedron. The largest deviations from tetrahedral geometry are found in the obtuse C22-Al2-C23 angle of 99.2 (2)° and the significantly larger C23-Al2-C22A angle of 123.5 (2)°.

There is an Al(C₆F₅)₃ group attached to C23 (and C23*A*) and the Ti-C23-Al1 vector is close to linearity [170.7 (2)°], suggesting some degree of dipole-dipole component to the ion-ion interaction in this complex. Compared to the Ti-C22 bond distance, the Ti-C23 bond is only slightly elongated as a result of the attached strongly Lewis acidic Al(C₆F₅)₃ group, presumably due to the metallacycle formation. The C23-Al(C₆F₅)₃ distance of 2.048 (3) Å is comparable to those in the μ -CH₃-Al(C₆F₅)₃⁻ anion [2.084 (2) and 2.059 (2) Å] in a 'doubly activated' *ansa*-zirconocene complex (Chen, 2000) and to that in the μ -CH₃-Al(C₆F₅)₃⁻ anion [2.033(3) Å] in a 'constrained-geometry' Ti complex (Chen *et al.*, 2001).

Experimental

All syntheses and manipulations of air-sensitive materials were carried out under an inert atmosphere (argon) glove-box. NMR scale reactions were conducted in Teflon-valve-sealed sample J-Young tubes. Solvents were first saturated with nitrogen and then dried by passage through activated alumina and Q-5TM catalyst prior to use. Deuterated NMR solvents were dried over sodium/potassium alloy and distilled and/or filtered prior to use. Me₂Si(η^5 -2,3,4,6-Me₄-C₉H₂)(C₆H₁₁N)Ti(CH₃)[μ -CH₃Al(C₆F₅)₃], (I), was prepared from the reaction on Me₂Si(η^5 -2,3,4,6-Me₄-C₉H₂)(C₆H₁₁N)Ti(CH₃)₂ with Al(C₆F₅)₃ in toluene or benzene at room temperature using a procedure similar to that described previously by Chen *et al.* (2001). Compound (I) was dissolved in benzene- d_6 in a J-Young NMR tube and the solution was heated in an oil bath at 333 K for 12 h. The resulting dark-red solution was stored at room temperature in a glove-box for 5 d, after which time, black crystals of (II) had formed.

Crystal data

1998)

 $T_{\min} = 0.925, T_{\max} = 0.985$

$[Ti_{2}(C_{21}H_{7}AlF_{15})_{2}(C_{21}H_{31}-NSi)_{2}]\cdot 2C_{6}D_{6}$ $M_{r} = 2099.58$ Triclinic, $P\overline{1}$ a = 12.8651 (7) Å b = 13.7422 (7) Å c = 15.2642 (9) Å $\alpha = 70.595$ (2)°	Z = 1 $D_x = 1.489 \text{ Mg m}^{-3}$ Mo K α radiation Cell parameters from 4099 reflections $\theta = 2.0-27.5^{\circ}$ $\mu = 0.34 \text{ mm}^{-1}$ T = 173 (2) K
$\beta = 70.795 (2)^{\circ}$ $\gamma = 71.944 (2)^{\circ}$ $V = 2341.9 (2) \text{ Å}^{3}$ Data collection	Needle, black $0.27 \times 0.11 \times 0.06 \text{ mm}$
Bruker SMART CCD area-detector diffractometer ω scans Absorption correction: integration based on measured indexed crystal faces (SHELXTL; Bruker,	15 647 measured reflections 10 542 independent reflections 5884 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.037$ $\theta_{\text{max}} = 27.5^{\circ}$ $h = -15 \rightarrow 16$

Table 1

Selected geometric parameters (Å, °).

Ti-N1	1.898 (2)	Ti-H22 <i>B</i>	2.19 (3)
Ti-C22	2.195 (3)	Ti-H23A	2.26 (3)
Ti-C23	2.230 (3)	Al1-C23	2.048 (3)
Ti-C1	2.256 (3)	Al2-C42	1.950 (3)
Ti-C2	2.333 (3)	Al2-C23	2.015 (3)
Ti-C8	2.395 (3)	Al2-C22	2.085 (3)
Ti-C3	2.474 (3)	Al2-C22 ⁱ	2.086 (3)
Ti-C9	2.556 (3)	Al2-Al2 ⁱ	2.695 (2)
N1-Ti-C22	110.38 (12)	$Al2^i - C22 - Ti$	140.60 (19)
N1 - Ti - C23	105.62 (12)	Ti - C22 - H22B	77.5 (19)
C22-Ti-C23	89.82 (12)	Al2-C23-Ti	83.33 (12)
C22-Al2-C22 ⁱ	99.48 (12)	Ti-C23-H23A	80 (2)
Al2-C22-Ti	82.62 (12)		

Symmetry code: (i) 1 - x, 1 - y, -z.

Refinement	
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.052$ $wR(F^2) = 0.123$ S = 0.96 10 542 reflections 636 parameters	H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0481P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.35 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.37 \text{ e} \text{ Å}^{-3}$

C-H distances of 0.98 and 0.99 Å were used for methyl and secondary C atoms, respectively. A distance of 0.95 Å was used for aromatic C atoms. The H-atom displacement parameters were set at $1.2U_{eq}$ of the parent C atom or $1.5U_{eq}$ for the methyl atoms. The H atoms on C22 and C23 were obtained from a difference Fourier map and refined without constraint. In addition to the complex, a molecule of benzene was found in a general position. Full data-collection details are in the archived CIF and also reported elsewhere (Abboud *et al.*, 1997).

Data collection: *SMART* (Bruker, 1998); cell refinement: *SMART* and *SAINT* (Bruker, 1998); data reduction: *SHELXTL* (Bruker, 1998); program(s) used to solve structure: *SHELXTL*; program(s) used to refine structure: *SHELXTL*; molecular graphics: Bruker *SHELXTL*.

KAA wishes to acknowledge the National Science Foundation and the University of Florida for funding of the purchase of the X-ray equipment.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FR1315). Services for accessing these data are described at the back of the journal.

References

- Abboud, K. A., Ortiz, C. G., Palenik, R. C. & Palenik, G. J. (1997). Acta Cryst. C53, 1322–1323.
- Bruker (1998). *SMART, SAINT* and *SHELXTL*. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, E. Y.-X. (2000). PCT Int. Appl. WO 00/09524.
- Chen, E. Y.-X., Kruper, W. J., Roof, G. & Wilson, D. R. (2001). J. Am. Chem. Soc. 123, 745–746.
- Chen, E. Y.-X. & Marks, T. J. (2000). Chem. Rev. 100, 1391-1434.
- Kickham, J. E., Guerin, F., Stewart, J. C. & Stephan, D. W. (2000). Angew. Chem. Int. Ed. 39, 3263–3266.
- McKnight, A. L. & Waymouth, R. M. (1998). Chem. Rev. 98, 2587–2598.
- Scoles, L., Minhas, R., Duchateau, R., Jubb, J. & Gambarotta, S. (1994). Organometallics, 13, 4978–4983.

 $k = -10 \rightarrow 17$

 $l = -17 \rightarrow 19$